Lightweight mechatronic system for humanoid robot

Author:

Jeong JaesikORCID,Yang JeehyunORCID,Christmann Guilherme Henrique GalelliORCID,Baltes Jacky

Abstract

Abstract This paper presents the technical specifications of a lightweight humanoid robot platform named Robinion Sr. including its mechanical and electrical design. We describe a versatile and robust mechatronic system, efficient walking gait, and software architecture of the humanoid robot. The humanoid robot platform is targeted for use in a range of applications, including research and development, competitions, and the service industry. A reduced platform cost was an essential consideration in our design. We introduce a specialized and inexpensive mechanical design, which includes a parallel-kinematics leg design, external gears, and low-cost controllers and sensors. The humanoid robot is equipped with an efficient electronic structure and a tablet computer for task scheduling, control, and perception, as well as an embedded controller for solving forward & inverse kinematics and low-level actuator control. The perception system recognizes objects at real-time inference with Deep Learning-based detection algorithms without a dedicated GPU. We present and evaluate the capabilities of our newly developed advanced humanoid robot and believe it is a suitable platform for the academic and industrial robotics community.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3