Abstract
AbstractThere has been a renewed interest in developing environmentally friendly, economically viable, and technologically feasible supersonic transport aircraft and reduced order modeling methods can play an important contribution in accelerating the design process of these future aircraft. This paper reviews the use of the vortex lattice method (VLM) in modeling the general aerodynamics of subsonic and supersonic aircraft. The historical overview of the vortex lattice method is reviewed which indicates the use of this method for over a century for development and advancements in the aerodynamic analysis of subsonic and supersonic aircraft. The preference of VLM over other potential flow-solvers is because of its low order highly efficient computational analysis which is quick and efficient. Developments in VLM covering steady, unsteady state, linear and non-linear aerodynamic characteristics for different wing planform for the purpose of several different types of design optimisation is reviewed. For over a decade classical vortex lattice method has been used for multi-objective optimisation studies for commercial aircraft and unmanned aerial vehicle’s aerodynamic performance optimisation. VLM was one of the major potential flow solvers for studying the aerodynamic and aeroelastic characteristics of many wings and aircraft for NASA’s supersonic transport mission (SST). VLM is a preferred means for solving large numbers of computational design parameters in less time, more efficiently, and cheaper when compared to conventional CFD analysis which lends itself more to detailed study and solving the more challenging configuration and aerodynamic features of civil supersonic transport.
Publisher
Cambridge University Press (CUP)
Reference153 articles.
1. High-fidelity aerodynamic modeling of an aircraft using OpenFoam – Application on the CRJ700;Segui;Aeronaut. J.,2022
2. [86] Seraj, S. and Martins, J.R.R.A. Aerodynamic shape optimization of a supersonic transport considering low-speed stability. In AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022, American Institute of Aeronautics and Astronautics Inc., San Diego, CA, USA, 3–7 January 2022, pp. 1–14.
3. Modification of the Euler equations for “vorticity confinement”: Application to the computation of interacting vortex rings;Steinhoff;Phys. Fluids,1994
4. Unsteady aerodynamics and flow control for flapping wing flyers;Ho;Prog. Aerosp. Sci.,2003
5. [107] Millikan, C.B. General theory of high speed aerodynamics. In High Speed Aerodynamics and Jet Propulsion, Vol. 6, Princeton University Press, Princeton, NJ, USA, 1954, Chapter 14, pp. 204–758.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献