High-fidelity aerodynamic modeling of an aircraft using OpenFoam – application on the CRJ700

Author:

Segui M.,Abel F.R.,Botez R.M.ORCID,Ceruti A.

Abstract

Abstract This study is focused on the development of longitudinal aerodynamic models for steady flight conditions. While several commercial solvers are available for this type of work, we seek to evaluate the accuracy of an open source software. This study aims to verify and demonstrate the accuracy of the OpenFoam solver when it is used on basic computers (32–64GB of RAM and eight cores). A new methodology was developed to show how an aerodynamic model of an aircraft could be designed using OpenFoam software. The mesh and the simulations were designed only using OpenFoam utilities, such as blockMesh, snappyHexMesh, simpleFoam and rhoSimpleFoam. For the methodology illustration, the process was applied to the Bombardier CRJ700 aircraft and simulations were performed for its flight envelope, up to M0.79. Forces and moments obtained with the OpenFoam model were compared with an accurate flight data source (level D flight simulator). Excellent results in data agreement were obtained with a maximum absolute error of 0.0026 for the drag coefficient, thus validating a high-fidelity aerodynamic model for the Bombardier CRJ-700 aircraft.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference54 articles.

1. Assessment of CFD Techniques for Wind Turbine Aeroelasticity

2. Aerodynamic coefficients prediction from minimum computation combinations using OpenVSP software;Segui;Int. J. Mech. Ind. Eng.,2018

3. On the validation and use of high-fidelity numerical simulations for gust response analysis;Huvelin;AerospaceLab J.,2018

4. Aircraft Design: A Conceptual Approach, Fifth Edition

5. [41] Caretto, L.S. , Gosman, A.D. , Patankar, S.V. and Spalding, D.B. Two Calculation Procedures for Steady, Three-Dimensional Flows with Recirculation. Publication 197315. National Aeronautics and Space Administration (NASA), p 26.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3