Settling and clustering of snow particles in atmospheric turbulence

Author:

Li Cheng,Lim Kaeul,Berk TimORCID,Abraham AlizaORCID,Heisel MichaelORCID,Guala Michele,Coletti FilippoORCID,Hong JiarongORCID

Abstract

The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider three snowfall events under vastly different levels of atmospheric turbulence. We characterize the size and morphology of the snow particles, and we simultaneously image their velocity, acceleration and relative concentration over vertical planes approximately $30\ \textrm {m}^2$ in area. We find that turbulence-driven settling enhancement explains otherwise contradictory trends between the particle size and velocity. The estimates of the Stokes number and the correlation between vertical velocity and local concentration are consistent with the view that the enhanced settling is rooted in the preferential sweeping mechanism. When the snow vertical velocity is large compared to the characteristic turbulence velocity, the crossing trajectories effect results in strong accelerations. When the conditions of preferential sweeping are met, the concentration field is highly non-uniform and clustering appears over a wide range of scales. These clusters, identified for the first time in a naturally occurring flow, display the signature features seen in canonical settings: power-law size distribution, fractal-like shape, vertical elongation and large fall speed that increases with the cluster size. These findings demonstrate that the fundamental phenomenology of particle-laden turbulence can be leveraged towards a better predictive understanding of snow precipitation and ground snow accumulation. They also demonstrate how environmental flows can be used to investigate dispersed multiphase flows at Reynolds numbers not accessible in laboratory experiments or numerical simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3