A knowledge-based system for the conceptual design of grippers for handling fabrics

Author:

MOULIANITIS V.C.,DENTSORAS A.J.,ASPRAGATHOS N.A.

Abstract

The paper presents a knowledge-based system (KBS) for the conceptual design of grippers for handling fabrics. Its main purpose is the integration of the domain knowledge in a single system for the systematic design of this type of grippers. The knowledge presented, in terms of gripper, material and handling process, are classified. The reasoning strategy is based upon a combination of a depth-first search method and a heuristic method. The heuristic search method finds a final solution from a given set of feasible solutions and can synthesize new solutions to accomplish the required specifications. Details of the main features of the system are given, including its ability to take critical design decisions according to four criteria, weighted by the designer. The knowledge-based system was implemented in the Kappa P. C. 2.3.2 environment. Two examples are given to illustrate some critical aspects concerning the KBS development, to explain the operation of the proposed searching heuristic method, and to show its effectiveness in producing design concepts for grippers.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Household Clothing Set and Benchmarks for Characterising End-Effector Cloth Manipulation;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

2. A Grasping-Centered Analysis for Cloth Manipulation;IEEE Transactions on Robotics;2020-06

3. Automation of product packaging for industrial applications;International Journal of Computer Integrated Manufacturing;2017-08-30

4. Robotic manipulation for the shoe-packaging process;The International Journal of Advanced Manufacturing Technology;2017-03-07

5. IT and Mechatronics in Industrial Robotic Workcell Design and Operation;Encyclopedia of Information Science and Technology, Third Edition;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3