Machining scheme selection based on a new discrete particle swarm optimization and analytic hierarchy process

Author:

Hu Yan-Juan,Wang Yao,Wang Zhan-Li,Wang Yi-Qiang,Zhang Bang-Cheng

Abstract

AbstractThe goal of machining scheme selection (MSS) is to select the most appropriate machining scheme for a previously designed part, for which the decision maker must take several aspects into consideration. Because many of these aspects may be conflicting, such as time, cost, quality, profit, resource utilization, and so on, the problem is rendered as a multiobjective one. Consequently, we consider a multiobjective optimization problem of MSS in this study, where production profit and machining quality are to be maximized while production cost and production time must be minimized, simultaneously. This paper presents a new discrete method for particle swarm optimization, which can be widely applied in MSS to find out the set of Pareto-optimal solutions for multiobjective optimization. To deal with multiple objectives and enable the decision maker to make decisions according to different demands on each evaluation index, an analytic hierarchy process is implemented to determine the weight value of evaluation indices. Case study is included to demonstrate the feasibility and robustness of the hybrid algorithm. It is shown from the case study that the multiobjective optimization model can simply, effectively, and objectively select the optimal machining scheme according to the different demands on evaluation indices.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3