The epsilon-knowledge: an emerging complement of Machlup's types of disciplinary knowledge

Author:

Horváth ImreORCID

Abstract

Abstract Machlup used the words alpha, beta, and gamma to identify humanities, science, and social science as three distinct fields of academic learning and knowing, in addition to general knowledge. Gilles and Paquet identified a fourth type of disciplinary knowledge and labeled it as delta. This includes the knowledge of creative disciplines such as design, law, and economy. Since the time of these road-paving works, a lot has changed. In the last two decades, various concepts and manifestations of intellectualized engineered systems have appeared. A paradigmatic feature of these systems, exemplified by smart cyber-physical systems, is that they collect, infer, or extract massive amount of synthetic system knowledge (M-SSK) based on some pre-programmed human knowledge. The amount of this type of knowledge grows continuously. It can be aggregated on system level and on system of systems level. This paper argues that this aggregated M-SSK is not covered by the abovementioned four genres of knowledge. In fact, it represents a new genre. The conducted literature study underpins this claim. Therefore, the paper suggests dealing with it as a new genre, called epsilon-knowledge. Artificial intelligence, system engineering, cyber-physical systems, and knowledge engineering are the disciplines dealing with epsilon-knowledge. The paper refers to sympérasmology as the proper conceptual framework of studying this genre of knowledge.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference123 articles.

1. Computational Discovery of Scientific Knowledge

2. Technology in the 21st century: New challenges and opportunities

3. Prototypical knowledge for expert systems

4. Knowledge representation in artificial intelligence using domain knowledge and reasoning mechanism;Soni;International Journal of Scientific Engineering and Research,2015

5. Why we iterate: scientific modeling in theory and practice

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3