Threshold limit theorems for some epidemic processes

Author:

Von Bahr Bengt,Martin-Löf Anders

Abstract

The Reed–Frost model for the spread of an infection is considered and limit theorems for the total size, T, of the epidemic are proved in the limit when n, the initial number of healthy persons, is large and the probability of an encounter between a healthy and an infected person per time unit, p, is λ/n. It is shown that there is a critical threshold λ = 1 in the following sense, when the initial number of infected persons, m, is finite: If λ ≦ 1, T remains finite and has a limit distribution which can be described. If λ > 1 this is still true with a probability σ m < 1, and with probability 1 – σ m T is close to n(1 – σ) and has an approximately Gaussian distribution around this value. When m → ∞ also, only the Gaussian part of the limit distribution is obtained. A randomized version of the Reed–Frost model is also considered, and this allows the same result to be proved for the Kermack–McKendrick model. It is also shown that the limit theorem can be used to study the number of connected components in a random graph, which can be considered as a crude description of a polymerization process. In this case polymerization takes place when λ > 1 and not when λ ≦ 1.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The asymptotic behavior of an SIR epidemic model: collective Reed-Frost process;Communications in Mathematical Biology and Neuroscience;2022

2. A stochastic SIR network epidemic model with preventive dropping of edges;Journal of Mathematical Biology;2019-03-13

3. Contagions in random networks with overlapping communities;Advances in Applied Probability;2015-12

4. Contagions in random networks with overlapping communities;Advances in Applied Probability;2015-12

5. State space collapse for critical multistage epidemics;Advances in Applied Probability;2015-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3