Author:
Coupechoux Emilie,Lelarge Marc
Abstract
We consider a threshold epidemic model on a clustered random graph model obtained from local transformations in an alternating branching process that approximates a bipartite graph. In other words, our epidemic model is such that an individual becomes infected as soon as the proportion of his/her infected neighbors exceeds the threshold q of the epidemic. In our random graph model, each individual can belong to several communities. The distributions for the community sizes and the number of communities an individual belongs to are arbitrary. We consider the case where the epidemic starts from a single individual, and we prove a phase transition (when the parameter q of the model varies) for the appearance of a cascade, i.e. when the epidemic can be propagated to an infinite part of the population. More precisely, we show that our epidemic is entirely described by a multi-type (and alternating) branching process, and then we apply Sevastyanov's theorem about the phase transition of multi-type Galton-Watson branching processes. In addition, we compute the entries of the mean progeny matrix corresponding to the epidemic. The phase transition for the contagion is given in terms of the largest eigenvalue of this matrix.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献