Parasitism as a potential contributor to massive clam mortality at the Blake Ridge Diapir methane-hydrate seep

Author:

Mills Anne M.,Ward Megan E.,Heyl Taylor P.,Van Dover Cindy L.

Abstract

Vesicomyid clam species are abundant in many deep-sea chemosynthetic communities, including cold seeps. They rely primarily on thiotrophic (sulphide-oxidizing) gill symbionts for nutrition and thus require sulphide-rich environments. Submersible surveys of megafaunal distributions at the Blake Ridge Diapir, a deep-sea methane-hydrate seep located ∼200 miles off the coast of Charleston, South Carolina, documented massive mortalities of vesicomyid clams. The cause of these mortalities is unknown, but sulphide deprivation, sulphide toxicity, and disease are possible agents of mortality in this system. Similar redox profiles in sediment cores from live and dead clam beds do not support the hypothesis that there has been a transient shift in the flux of sulphide. To address the potential for disease as a cause of mortality, we undertook a histological survey of microparasites and other indications of disease in clam tissues. Six morphological types of parasites were identified using light microscopy, including two viral-like inclusions, Rickettsia-like gill inclusions, possible bacterial gut inclusions, bacterial gill infections, and a protistan inclusion. Of these parasites, two were pathogenic: viral-like inclusions in mantle tissues caused tissue degradation; bacterial gill infections resulted in localized disruption and degradation of gill filaments. Infection prevalence and densities were low for all parasites observed. The majority of clams examined showed intense haemocytic responses in the absence of any obvious etiologic agent, suggesting the presence of parasites not detectable by our methods. Our findings indicate that the clam population at the Blake Ridge seep was in relatively good health at the time of sampling.

Publisher

Cambridge University Press (CUP)

Subject

Aquatic Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3