In vitro digestion of caseinophosphopeptide–iron complex

Author:

AÎT-OUKHATAR NABIL,BOUHALLAB SAÏD,BUREAU FRANÇOIS,ARHAN PIERRE,MAUBOIS JEAN-LOUIS,BOUGLÉ DOMINIQUE L.

Abstract

Caseins bind strongly to Fe by their phosphoseryl residues (Hegenauer et al. 1979; Brulé & Fauquant, 1982; Bouhallab et al. 1991; Emery, 1992) and keep it soluble at the alkaline pH of the duodenum (Manson & Annan, 1971; Bouhallab et al. 1991). It has been suggested that this strong binding prevents the release of free Fe during digestion and impairs its absorption (West, 1986; Hurrell, 1997), but in human studies hydrolysis by digestive enzymes to give low molecular mass peptides improves Fe absorption (Hurrell et al. 1988, 1989).β-Casein peptide 1–25 (β-CN(1–25)) is the phosphorylated N-terminal fragment of β-CN. Its molecular mass is 3124 Da and it contains four phosphoseryl residues that bind four Fe atoms and keep them soluble (Bouhallab et al. 1991).Preliminary results showed that binding Fe to β-CN(1–25) enhances its bioavailability in the rat (Aît-Oukhatar et al. 1997) and its absorption by the duodenal rat loop model (Pérès et al. 1997). We recently showed that the β- CN(1–25)–Fe complex is hydrolysed to a lesser extent than free β-CN(1–25) during duodenal digestion, and that the phosphorylated region of the peptide to which Fe is bound, β-CN(15–24), cannot be detected in the digestive lumen (our unpublished results).These previous studies did not examine the effect of luminal digestion that could release free inorganic Fe. We considered the possibility that Fe bound to β-CN(1–25) is not released in the digestive lumen, and that it reaches the absorbing surface of the small intestine brush border membrane as a complex. To test this hypothesis we examined in vitro the influence of pH and digestive enzymes on the dialysability of the β-CN(1–25)–Fe complex.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3