Assessing the potential of photogrammetry to monitor feed intake of dairy cows

Author:

Bloch Victor,Levit Harel,Halachmi Ilan

Abstract

AbstractWe address the hypothesis that individual cow feed intake can be measured in commercial farms through the use of a photogrammetry method. Feed intake and feed efficiency have a significant economic value for the farmer. A common method for measuring feed mass in research is a feed mass weighing system, which is excessively expensive for commercial farms. However, feed mass can be estimated by its volume, which can be measured by photogrammetry. Photogrammetry applies cameras along the feed-lane, photographing the feed before and after the cow visits the feed-lane, and calculating the feed volume. In this study, the precision of estimating feed mass by its volume was tested by comparing measured mass and calculated volume of feed heaps. The following principal factors had an impact on the precision of this method: camera quality, lighting conditions, image resolution, number of images, and feed density. Under laboratory conditions, the feed mass estimation error was 0·483 kg for heaps up to 7 kg, while in the cowshed the estimation error was 1·32 kg for up to 40 kg. A complementary experiment showed that the natural feed compressibility causes about 85% of uncertainty in the mass estimation error.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

Reference22 articles.

1. Short communication: Measuring feed volume and weight by machine vision

2. Validation of a system for monitoring feeding behavior in beef cattle1

3. Reducing the cost of beef production through genetic improvement in residual feed intake: opportunity and challenges to application;Herd;Journal of Animal Science,2003

4. Feeding behavior improves prediction of dairy cow voluntary feed intake but cannot serve as the sole indicator;Halachmi;Journal of Animal Science,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3