Aetiology of disturbed milk ejection in parturient primiparous cows

Author:

Bruckmaier Rupert M.,Schams Dieter,Blum Jürg W.

Abstract

SummaryMilk flow in nine primiparous cows with disturbed milk ejection (D) and in six corresponding control animals (C) with normal milk removal was recorded during machine milking and blood samples were taken before and during milking to determine plasma oxytocin, vasopressin. prolactin, cortisol, oestradiol-17β, luteinizing hormone, progesterone and β-endorphin concentrations. Manual teat stimulation before milking lasted for 1 min. After milk flow had stopped, air was blown into the vagina for 2 min. When milk flow had stopped again, 1 i.u. oxytocin and finally 10 i.u. oxytocin were injected to remove residual milk. During and after teat stimulation, oxytocin remained basal in D, but increased in C, whereas prolactin increased in both groups. While 94% of total milk was obtained in C during this period, only 9% could be removed from D, indicating lack of alveolar milk ejection. During vaginal stimulation, oxytocin increased transiently in D and more than by teat stimulation in C. This allowed the removal of 75% of milk in D, whereas almost no more milk was available in C. After oxytocin injections, 3 and 16% of residual milk were obtained in C and D respectively. Basal oestradiol-17β concentration was higher in D than in C (11·6 and 2·0 ng/1 respectively), whereas β-endorphin level was lower (24·1 and 86·6 μg/1 respectively). Basal concentration of luteinizing hormone and progesterone, and concentration of cortisol and vasopressin before and during milking were comparable in C and D. We conclude that in cows with disturbed milk ejection afferent nervous pathways to the hypothalamus were intact, because prolactin was released by teat stimulation. However, oxytocin was only released by vaginal stimulation, i.e. milk ejection was centrally inhibited during teat stimulation.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3