Ultrasonic analysis of rennet-induced pre-gelation and gelation processes in milk

Author:

Dwyer Catherine,Donnelly Liam,Buckin Vitaly

Abstract

Dynamics of micro-structural changes in milk during the renneting process were analysed using high-resolution ultrasonic spectroscopy in combination with dynamic rheology and NIR transmission measurements. Two independent ultrasonic parameters, velocity and attenuation were measured in the frequency range 2 to 15 MHz, as a function of time after addition of rennet to milk. The results show an initial decrease of 20 nm for the average diameter of micelles caused by hydrolysis of the κ-casein ‘hairy’ layer followed by an aggregation of the micelles into small clusters (effective aggregation number of 3) and then formation of the gel structure. It was found that evolution of ultrasonic attenuation in the renneting process could well be described by the scattering of the ultrasonic waves on aggregates. The evolution of ultrasonic velocity is well described by the scattering theory but deviates from the predicted curve at the gelation stage of the process, which shows the difference in propagation of ultrasonic waves in a gel structure compared with dispersions. Overall, we found high-resolution ultrasonic spectroscopy to be a powerful tool for analysis of microscopic processes in the formation of milk gel. It allows the characterisation of the pre-gelation processes, such as hydrolysis and aggregation, and the initial stages in the formation of the gel network as well as monitoring of the microscopic evolution in the gel at the post-gelation stage.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3