Abstract
SummaryThe acid phosphatase of bovine milk was further purified to yield enzyme with an activity of about 2 units/mg. This was almost 105 times the activity present in milk and enabled a detailed study of heat inactivation to be made, together with further measurements on binding to casein substrates.The effectiveness of caseins as inhibitors of the hydrolysis of p-nitrophenyl phosphate by acid phosphatase paralleled the phosphate content of the casein molecules, so that αs1-casein A was a more potent inhibitor with a K1 of 1·7 mM than β-casein A1A2 (K1 = 4·3 mM), which in turn was more inhibitory than κ-casein A (K1 = 5·9 mM).The heat inactivation of acid phosphatase followed first-order kinetics at pH 4·9, 5·2 and 6·7 and values of E, the activation energy, were between 2·4×105 and 3·0×105 J mole −1 in all cases, consistent with simple protein denaturation. The presence of 1% αs1-casein A, 1% β-casein A1A2, 1% κ-casein A, 1% isoelectrically precipitated ‘whole’ casein and 1% fresh raw milk provided no substrate protection at pH 5·2 or 6·7. Acid phosphatase was somewhat less heat stable at pH 6·7 than at pH 4·9, but may be expected to survive typical milk pasteurization conditions almost completely. However, conventional milk sterilization or ultra-high-temperature (UHT) processes would be expected to give total inactivation.
Publisher
Cambridge University Press (CUP)
Subject
Animal Science and Zoology,General Medicine,Food Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Phosphatases in Milk;Agents of Change;2021
2. Indigenous Enzymes of Milk;Advanced Dairy Chemistry;2012-10-27
3. Indigenous enzymes in milk: Overview and historical aspects—Part 2;International Dairy Journal;2006-06
4. Acid phosphatase in cheese;Animal Science Journal;2004-10
5. Indigenous Phosphatases in Milk;Advanced Dairy Chemistry—1 Proteins;2003