Abstract
AbstractVarieties fibered into del Pezzo surfaces form a class of possible outputs of the minimal model program. It is known that del Pezzo fibrations of degrees
$1$
and
$2$
over the projective line with smooth total space satisfying the so-called
$K^2$
-condition are birationally rigid: their Mori fiber space structure is unique. This implies that they are not birational to any Fano varieties, conic bundles, or other del Pezzo fibrations. In particular, they are irrational. The families of del Pezzo fibrations with smooth total space of degree
$2$
are rather special, as for most families a general del Pezzo fibration has the simplest orbifold singularities. We prove that orbifold del Pezzo fibrations of degree
$2$
over the projective line satisfying explicit generality conditions as well as a generalized
$K^2$
-condition are birationally rigid.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献