On Affine Transformations of a Riemannian Manifold

Author:

Hano Jun-Ichi

Abstract

In this paper we establish some theorems about the group of affine transformations on a Riemannian manifold. First we prove a decomposition theorem (Theorem 1) of the largest connected group of affine transformations on a simply connected complete Riemannian manifold, which corresponds to the decomposition theorem of de Rham [4] for the manifold. In the case of the largest group of isometries, a theorem of the same type is found in de Rham’s paper [4] in a weaker form. Using Theorem 1 we obtain a sufficient condition for an infinitesimal affine transformation to be a Killing vector field (Theorem 2). This result includes K. Yano’s theorem [13] which states that on a compact Riemannian manifold an infinitesimal affine transformation is always a Killing vector field. His proof of the theorem depends on an integral formula which is valid only for a compact manifold. Our method is quite different and is based on a result [11] of K. Nomizu.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference13 articles.

1. Sur les transformations affines d’une variété riemannienne;Nomizu;Comptes rendus,1953

2. Invariant Affine Connections on Homogeneous Spaces

3. Espaces à connexion de cartan complets

4. Groupe de transformations qui laissent invariante une connexion infinitésimale;Kobayashi;Comptes rendus,1954

5. On the group of affine transformations of an affinely connected manifold

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Almost isotropy-maximal manifolds of non-negative curvature;Transactions of the American Mathematical Society;2024-05-17

2. De Rham Decomposition Theorem for Strongly Convex Kähler–Berwald Manifolds;Results in Mathematics;2022-11-26

3. Notes on affine Killing and two-Killing vector fields;Mathematica Slovaca;2022-03-28

4. Odd-Dimensional GKM-Manifolds of Non-Negative Curvature;International Mathematics Research Notices;2021-10-07

5. Torus actions, maximality, and non-negative curvature;Journal für die reine und angewandte Mathematik (Crelles Journal);2021-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3