Log-polynomial background subtraction in energy-filtered TEM

Author:

Evans N. D.,Bentley J.

Abstract

An inverse power relation is widely used to model the background under inner shell ionization edges in both electron energy-loss spectrometry (EELS) and energy-filtered transmission electron microscopy (EFTEM). Proper background subtraction is necessary to obtain correct core-loss integrated intensities in EELS or elemental maps in EFTEM. However, the empirical inverse power relation often does not accurately model the background when losses at slightly lower energies interfere with the edge of interest, or in general, when energy losses are less than ∼200 eV. In such cases, the background of EELS spectra has been successfully fitted as a linear least-squares fit to a polynomial, usually a quadratic of the form: log(I) = A + BX + CX2, where I = intensity and X = log(energy loss). In the present study, this alternative background model, the “log-polynomial,” has been applied to pre-edge images for background subtraction from post-edge energy-filtered images.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference4 articles.

1. Research sponsored by the Division of Materials Sciences, U.S. Department of Energy, under contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corp., and through the SHaRE Program under contract DE-AC05-76OR00033 with Oak Ridge Associated Universities.

2. Bentley, J. and Kenik, E. A. , Proc. 52nd Ann MSA Meeting, (1994) 1000.

3. Bentley, J. et al., Proc. 40th Ann MSA Meeting, (1982) 496.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3