Author:
BALOGH JÓZSEF,LIU HONG,PETŘÍČKOVÁ ŠÁRKA,SHARIFZADEH MARYAM
Abstract
Recently, settling a question of Erdős, Balogh, and Petříčková showed that there are at most $2^{n^{2}/8+o(n^{2})}$$n$-vertex maximal triangle-free graphs, matching the previously known lower bound. Here, we characterize the typical structure of maximal triangle-free graphs. We show that almost every maximal triangle-free graph $G$ admits a vertex partition $X\cup Y$ such that $G[X]$ is a perfect matching and $Y$ is an independent set.Our proof uses the Ruzsa–Szemerédi removal lemma, the Erdős–Simonovits stability theorem, and recent results of Balogh, Morris, and Samotij and Saxton and Thomason on characterization of the structure of independent sets in hypergraphs. The proof also relies on a new bound on the number of maximal independent sets in triangle-free graphs with many vertex-disjoint $P_{3}$s, which is of independent interest.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献