Backflow structures in turbulent pipe flows at low to moderate Reynolds numbers

Author:

Chen Xue,Chung Yongmann M.ORCID,Wan MinpingORCID

Abstract

The statistical characteristics and the evolution of the backflow structures are investigated in wall-bounded flows at Reynolds numbers up to $Re_{\tau }=1000$ . The backflow is caused by the joining of large-scale high- and low-speed structures in the vicinity of the wall and is formed at the tail tip of the low-speed structure. The distribution density of the backflow structures and the percentage area of the backflow region on the wall both increase with the Reynolds number. The backflow structures have an average lifespan of 8 wall units which is found to be slightly longer in the pipe than the channel, and they are convected downstream at the average velocities of the buffer region of approximately 10 wall units, similar to Cardesa et al. (J. Fluid Mech., vol. 880, 2019, R3). The backflow structures occasionally split and merge, and can form detached from the wall. Evidence shows that the split, merged and wall-detached backflow structures are caused by the near-wall structures. The split backflow structures are on average, larger and more spanwise-elongated which are split due to the spanwise shearing of the near-wall streaks. A backflow structure is formed detached from the wall when the trailing end of its carrier low-speed structure ‘sits’ on the near-wall high-speed streaks. The wall-detached backflow structures tend to become wall-attached by approaching the wall when undergoing a similar life cycle to the normal backflow of growth and decay with spanwise elongation because the backflow region at the tail of the low-speed structure is continuously pressed down to the wall by the high-speed structure driven by persistent vortical structures in the buffer region.

Funder

China National Funds for Distinguished Young Scientists

National Natural Science Foundation of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3