Four-dimensional variational data assimilation of a turbulent jet for super-temporal-resolution reconstruction

Author:

He ChuangxinORCID,Zeng XinORCID,Wang PengORCID,Wen XinORCID,Liu Yingzheng

Abstract

The super-temporal-resolution (STR) reconstruction of turbulent flows is an important data augmentation application for increasing the data reach in measurement techniques and understanding turbulence dynamics. This paper proposes a data assimilation (DA) strategy based on weak-constraint four-dimensional variation to conduct an STR reconstruction in a turbulent jet beyond the Nyquist limit from given low-sampling-rate observations. Highly resolved large-eddy simulation (LES) data are used to produce synthetic measurements, which are used as observations and for validation. A segregated assimilation procedure is realised to assimilate the initial condition, inflow boundary condition and model error separately. Different types of observational data are tested. The first type is down-sampled LES data containing many small-scale turbulence structures with or without synthetic noise. The DA results show that the temporal variation of the small-scale structures is well recovered even with noise in the observations. The spectra are resolved to a frequency approximately one order of magnitude higher than what can be captured within the Nyquist limit. The second type of observation is low-sampling-rate tomographic particle image velocimetry (tomo-PIV) data with or without the injection of small-scale structures. The modulation between the large-scale structures contained in the tomo-PIV fields and the small scales injected from the observations is improved. The resultant small scales in the STR reconstruction have the characteristics of authentic turbulence to a considerable extent. Additionally, DA yields much smaller errors in the prediction of particle positions when compared with the Wiener filter, demonstrating the great potential for Lagrangian particle tracking in measurement techniques.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3