Evolution of the velocity-gradient tensor in a spatially developing turbulent flow

Author:

Gomes-Fernandes R.,Ganapathisubramani B.,Vassilicos J. C.

Abstract

AbstractAn experimental study of turbulence generated by a low-blockage space-filling fractal square grid was performed using cinematographic stereoscopic particle image velocimetry in a water tunnel. All fluctuating velocity gradients were measured and their statistics were computed at three different stations along the streamwise direction downstream of the grid: in the production region, at the location of peak turbulence intensity and in the non-equilibrium decay region. The usual signatures of these statistics are only found in the decay region, where a well-defined$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2/3$power-law dependence of the second-order structure function on two-point distance is also present. However, this$2/3$exponent is well defined over a wide range of scales even at the peak location, where the statistics of the fluctuating velocity-gradient tensor are very unusual. There, as at the production region station, the$Q\text {--}R$teardrop shape is not yet fully developed, vortex stretching only slightly dominates over compression and they both fluctuate very widely, reaching very high low-probability values. In these two stations, there is also only marginal preference between sheet-like and tube-like velocity-gradient structures as seen by the sign of the second eigenvalue of the strain-rate tensor. Yet, there are subregions of the flow in the production region where the$2/3$exponent is present and where the$Q\text {--}R$teardrop shape is as undeveloped as for the entire data set at this station.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3