Abstract
Tonal noise emitted from the trailing edge of an airfoil is considered using modal analysis techniques to investigate secondary quadrupole tones. We examine the origin of quadrupole sound generated from two-dimensional unsteady laminar flow over a NACA0012 airfoil. In this paper, we consider two flow configurations at Mach numbers of
$M_\infty = 0.1$
and 0.05 that lead to different acoustic characteristics: the former has a significant high-frequency quadrupole noise source, whereas the latter does not. We use vortex sound theory, dynamic mode decomposition (DMD), and resolvent analysis to analyze the sound source. First, we employ DMD modes to reveal that the quadrupole sound is only observed in the higher Mach number case. Next, the vortex dynamics in the vicinity of the trailing edge are studied to identify the origin of quadrupole sound. It is found that the quadrupole sound is caused by vortex shedding in the vicinity of the trailing edge. The complex vortex interaction between both sides of the airfoil strengthens the quadrupole source in the higher Mach number case, while it is negligible in the lower one. Furthermore, we perform resolvent analysis to examine the vortex generation over the airfoil. The resolvent mode indicates that the interaction between the vortices on both sides of the airfoil causes a multi-scale vortex structure on the suction-side wall.
Funder
Japan Society for the Promotion of Science
Tokyo University of Agriculture and Technology
Army Research Office
Office of Naval Research
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献