Annular self-organization of the two-dimensional vorticity condensate

Author:

Scott R.K.ORCID

Abstract

Self-organization of the vorticity condensate of forced two-dimensional turbulence is examined in analogy with the mixing of a background planetary vorticity gradient in geophysical flows. Starting from the theoretical vorticity profile of the condensate, different scenarios are illustrated by the construction of idealized angular momentum conserving rearrangements of vorticity into a staircase profile similar to the potential vorticity staircase of $\beta$ -plane turbulence. Two sets of numerical experiments are then presented that illustrate a similar self-organization of the background vorticity gradient in fully turbulent flows. In the first set of experiments, the flow is initialized with a laminar vortex dipole corresponding to the theoretical condensate vorticity profile. A fluctuation vorticity field is then induced by a stochastic forcing at smaller scales, which induces an azimuthally symmetric self-organization of the laminar flow into distinct annular bands. In the second set of experiments, the flow is initialized from rest with stochastic forcing generating a turbulent inverse energy cascade, out of which emerges the condensate in a self-consistent evolution as the turbulent energy accumulates at the domain scale. A self-organization of the condensate is again observed, giving a distinct annular structure on top of the theoretically predicted condensate profile. A major difference from the potential vorticity staircase of geophysical flows is the emergence in many cases of significantly non-monotonic radial vorticity profiles.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3