The limits of β-plane turbulence

Author:

Scott R.K.ORCID

Abstract

The quasigeostrophic shallow-water system on the mid-latitude $\beta$ plane with weak, small-scale turbulent forcing is explored in the limit of large energy. Forcing is weak in the sense that the energy input rate relative to the energy of the flow is very small, of the order of $10^{-5}$ $10^{-10}$ , and the potential vorticity assumes an approximate staircase structure. The flow has large energy in the sense that the jet spacing is equal to the domain width so that no further jet mergers can occur. Quasi-stationary numerical experiments, in which the energy grows linearly, reveal late-time quasi-steady, translating solutions comprising a single jet and vortex dipole, with details of the jet-vortex configuration depending on the deformation radius. At a smaller deformation radius the jet may traverse the entire domain in the $y$ direction one or more times, giving a jet orientation that is predominantly north–south, rather than the usual east–west orientation characteristic of $\beta$ -plane jets at lower energy. In these meandering cases, a mode number is proposed that quantifies the degree of meandering relative to the vortices. Besides the steadily translating solutions, topological changes in the jet-vortex structure are identified that occur via a transient interaction of a meandering jet with a vortex. At high energy, these give rise to apparently periodic solutions of the system; at low energy, before a single, domain-wide jet is established, they indicate that jet merger may occur through more complicated processes than the simple merging of neighbouring jets.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3