Unsteady drag force on an immersed sphere oscillating near a wall

Author:

Zhang ZaichengORCID,Bertin VincentORCID,Essink Martin H.ORCID,Zhang Hao,Fares NicolasORCID,Shen Zaiyi,Bickel ThomasORCID,Salez ThomasORCID,Maali AbdelhamidORCID

Abstract

The unsteady hydrodynamic drag exerted on an oscillating sphere near a planar wall is addressed experimentally, theoretically and numerically. The experiments are performed by using colloidal-probe atomic force microscopy in thermal noise mode. The resonance frequencies and quality factors are extracted from the measurement of the power spectrum density of the probe oscillation for a broad range of gap distances and Womersley numbers. The shift in the resonance frequency of the colloidal probe as the probe goes close to a solid wall infers the wall-induced variations of the effective mass of the probe. Interestingly, a crossover from a positive to a negative shift is observed as the Womersley number increases. In order to rationalize the results, the confined unsteady Stokes equation is solved numerically using a finite-element method, as well as asymptotic calculations. The in-phase and out-of-phase terms of the hydrodynamic drag acting on the sphere are obtained and agree well with the experimental results. All together, the experimental, theoretical and numerical results show that the hydrodynamic force felt by an immersed sphere oscillating near a wall is highly dependent on the Womersley number.

Funder

European Research Council

Agence Nationale de la Recherche

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3