Sublinear drag regime at mesoscopic scales in viscoelastic materials

Author:

Ferreira A. E. O.,de Araújo J. L. B.ORCID,Ferreira W. P.,de Sousa J. S.,Oliveira C. L. N.ORCID

Abstract

Stressed soft materials commonly present viscoelastic signatures in the form of power-law or exponential decay. Although exponential responses are the most common, power-law time dependencies arise peculiarly in complex soft materials such as living cells. Understanding the microscale mechanisms that drive rheologic behaviors at the macroscale shall be transformative in fields such as material design and bioengineering. Using an elastic network model of macromolecules immersed in a viscous fluid, we numerically reproduce those characteristic viscoelastic relaxations and show how the microscopic interactions determine the rheologic response. The macromolecules, represented by particles in the network, interact with neighbors through a spring constant k and with fluid through a non-linear drag regime. The dissipative force is given by γvα, where v is the particle’s velocity, and γ and α are mesoscopic parameters. Physically, the sublinear regime of the drag forces is related to micro-deformations of the macromolecules, while α ≥ 1 represents rigid cases. We obtain exponential or power-law relaxations or a transitional behavior between them by changing k, γ, and α. We find that exponential decays are indeed the most common behavior. However, power laws may arise when forces between the macromolecules and the fluid are sublinear. Our findings show that in materials not too soft not too elastic, the rheological responses are entirely controlled by α in the sublinear regime. More specifically, power-law responses arise for 0.3 ⪅ α ⪅ 0.45, while exponential responses for small and large values of α, namely, 0.0 ⪅ α ⪅ 0.2 and 0.55 ⪅ α ⪅ 1.0.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico

Fundação Edson Queiroz/Universidade de Fortaleza

Publisher

Public Library of Science (PLoS)

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3