Experimental study of vortex ring impingement on concave hemispherical cavities

Author:

Ahmed TanvirORCID,Erath Byron D.ORCID

Abstract

Discrete vortex rings impinging on concave hemispherical cavities were explored experimentally. Planar laser-induced fluorescence, two-dimensional particle image velocimetry and flow visualization techniques were employed. Five different ratios of vortex ring to hemisphere cavity radius ( $\gamma$ ) were investigated, namely, $\gamma = 1/4,1/3,2/5,$ $1/2, 2/3$ . For $\gamma = 1/4,1/3, 2/5$ , the geometric confinement of the primary ring due to the hemispherical cavity induced loop-like instabilities in the secondary ring, which led to head-on collision and ejection of the looped ends as they orbited the primary ring. As the hemispherical cavity decreased in diameter (increasing $\gamma$ ), the dynamics were altered significantly due to the increased generation of vorticity along the edge of the hemisphere. For $\gamma = 1/2$ , vorticity produced at the edge/lip of the hemisphere ultimately disrupted the classical formation of a secondary vortex ring from the wall-bounded vorticity. For $\gamma = 2/3$ , the primary ring and hemisphere radius were close enough in size that the interaction was dominated by direct impact of the primary ring with the lip of the cavity. The primary vortex ring produced a vortex ring at the lip of the hemisphere that ultimately separated from the cavity, orbited around the primary ring, and then self-advected in the direction opposite to the primary vortex ring trajectory. A detailed investigation of the dynamics provided.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collisions of vortex rings with hemispheres;Journal of Fluid Mechanics;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3