Lagrangian particle tracking velocimetry investigation of vortex shedding topology for oscillating heavy spherical pendulums underwater

Author:

Gold ThomasORCID,Reiterer KevinORCID,Worf DominikORCID,Khosronejad AliORCID,Habersack Helmut,Sindelar Christine

Abstract

The vortex shedding topology of a heavy pendulum oscillating in a dense fluid is investigated using time-resolved three-dimensional particle tracking velocimetry (tr-3-D-PTV). A series of experiments with eight different solid to fluid mass ratios $m^*$ in the range $[1.14, 14.95]$ and corresponding Reynolds numbers of up to $Re \sim O(10^4)$ was conducted. The period of oscillation depends heavily on $m^*$ . The relation between amplitude decay and oscillation frequency is non-monotonic, having a damping optimum at $m^* \approx 2.50$ . Moreover, a novel digital object tracking (DOT) method using vorticity-magnitude iso-surfaces is implemented to analyse vortical structures. A similar vortex shedding topology is observed for various mass ratios $m^*$ . Our observations show that first, a vortex ring in the pendulum's wake is formed. Soon after, the initial ring breaks down to two clearly distinguishable structures of similar size. One of the two vortices remains on the circular path of the pendulum, while the other detaches, propagates downwards, and eventually dissipates. The time when the first vortex is shed, and its initial propagation velocity, depend on $m^*$ and the momentum imparted by the spherical bob. The findings further show good agreement between the experimentally determined vortex shedding frequency and the theoretical vortex shedding time scale based on the Strouhal number.

Funder

Austrian Science Fund

Christian Doppler Forschungsgesellschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics of heavy subaqueous spherical pendulums;Journal of Fluid Mechanics;2024-01-05

2. Oscillation decay of a pendulum by an air jet;Physics Letters A;2023-09

3. Experimental and numerical investigation of fluid-particle-interactions in water;Österreichische Wasser- und Abfallwirtschaft;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3