Abstract
In this paper, the reflection of curved shock waves over a symmetry plane in planar supersonic flow is studied. This includes stable Mach reflection (MR) and the regular reflection (RR) to MR transition process. Curved shock theory (CST) is applied to derive the high-order parameters in front of and behind the shock wave. The method of curved shock characteristics is used to establish an analytical model to predict the wave configurations. The shock structures provided by the proposed model agree well with the numerical results. Flow structures, such as the height of the Mach stem and the shape of the shock wave and slip line, are studied by applying the analytical model. Isentropic waves generated from a curved wall are found to significantly influence the flow patterns. It appears that the compression waves obstruct the formation of the sonic throat and increase the Mach-stem height. The expansion waves have the opposite effect. The evolution mechanism of the Mach stem is found in conjunction with the RR-to-MR transition process. The CST is extended to a moving frame and used to model the transition. The time history of the moving triple point illustrates the effects of the incident shock angle and isentropic waves on the transition process.
Funder
National Natural Science Foundation of China
Aeronautical Science Foundation of China
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献