Mach reflection of three-dimensional curved shock waves on V-shaped blunt leading edges

Author:

Zhang TaoORCID,Cheng JianruiORCID,Shi ChongguangORCID,Zhu ChengxiangORCID,You YanchengORCID

Abstract

Theoretical investigation of the primary Mach reflection (MR) configuration on V-shaped blunt leading edges (VBLEs) forms the focus of this study. By ignoring the secondary interactions, a theoretical method based on a simplified form of the continuity relation is developed to predict the shock configurations, including the detached shock, the Mach stem, the transmitted shock and the triple point. The comparison of the theoretical results with both numerical and previous experimental results shows the reliability of the theoretical approach in predicting shock structures across a wide range of free stream and geometric parameters. The theoretical model provides a detailed comprehension of the occurrence mechanism of inverse MRs on VBLEs and the influence of the free stream and geometric parameters on primary MR configurations. Along with the primary MR configuration, the curved shock or compression waves generated by the crotch are solved and offer insight into the transition from the MR to the regular reflection from the same family (sRR). The increase of the ratio $R/r$ and the free stream Mach number $M_0$ appears to facilitate the transition, while the effect of the half-span angle $\beta$ is non-monotonic. The predicted shock positions allow for the identification of the transition boundary between the primary MR and sRR. It is found that $R/r$ below a threshold (for a set $M_0$ value) produces MR, irrespective of $\beta$ . If this threshold is exceeded, the configuration can transition from the primary MR to sRR and then back to the primary MR as $\beta$ increases.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3