Coalescence of immiscible sessile droplets on a partial wetting surface

Author:

Xu Huadan,Ge Xinjin,Wang Tianyou,Che ZhizhaoORCID

Abstract

Droplet coalescence is a common phenomenon and plays an important role in multidisciplinary applications. Previous studies mainly consider the coalescence of miscible liquids, even though the coalescence of immiscible droplets on a solid surface is a common process. In this study, we explore the coalescence of two immiscible droplets on a partial wetting surface experimentally and theoretically. We find that the coalescence process can be divided into three stages based on the time scales and force interactions involved, namely (I) the growth of a liquid bridge, (II) the oscillation of the coalescing sessile droplet and (III) the formation of a partially engulfed compound sessile droplet and the subsequent retraction. In stage I, the immiscible interface is found not to affect the scaling of the temporal evolution of the liquid bridge, which follows the same 2/3 power law as that of miscible droplets. In stage II, by developing a new capillary time scale considering both surface and interfacial tensions, we show that the interfacial tension between the two immiscible liquids functions as a non-negligible resistance to the oscillation which decreases the oscillation periods. In stage III, a modified Ohnesorge number is developed to characterize the visco-capillary and inertia-capillary time scales involved during the displacement of water by oil; a new model based on energy balance is proposed to analyse the maximum retraction velocity, highlighting that the viscous resistance is concentrated in a region close to the contact line.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3