Electrocoalescence of a pair of conducting drops in an insulating oil

Author:

Anand VikkyORCID,Roy Subhankar,Naik Vijay M.,Juvekar Vinay A.,Thaokar Rochish M.ORCID

Abstract

The effect of an electric field on the coalescence of two water drops suspended in an insulating oil is investigated. We report four new results. (i) The cone angle for the non-coalescence of drops can be significantly smaller (as small as $19^{\circ }$) than the value of $30.8^{\circ }$ reported by Bird et al. (Phys. Rev. Lett., vol. 103 (16), 2009, 164502). (ii) A surprising observation of the dependence of the mode of coalescence/non-coalescence on the type of insulating oil is seen. A cone–cone mode for silicone oil is observed as against cone–dimple mode for castor oil. (iii) The critical capillary number for non-coalescence decreases with increase in the conductivity of the droplet phase. (iv) Systematic experiments prove that the apparent bridge during non-coalescence is indeed transitory and not permanent, as reported elsewhere. Theoretical calculations using analytical theory and the boundary integral method explain the formation of the cone–dimple mode as well as the transitory bridge length. The numerical calculation and thereby the physical mechanism to explain the occurrence of very small non-coalescence angles as well as the dependence of the phenomenon on the conductivity of the insulating oil and the water droplets remain unexplained.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3