Global stability analysis of elastic aircraft in edge-of-the-envelope flow

Author:

Houtman JelleORCID,Timme SebastianORCID

Abstract

Shock buffet on wings is a phenomenon caused by strong shock-wave/boundary-layer interaction resulting first in self-sustained flow unsteadiness and eventually in a detrimental structural response called buffeting. While it is an important aspect of wing design and aircraft certification, particularly for modern transonic air transport, not all of the underlying multidisciplinary physics is thoroughly understood. Building upon a single-discipline shock-buffet stability study, this work now investigates the impact of an elastic structure in these extreme flow conditions. Specifically, a triglobal stability analysis of a fluid–structure coupled system is presented, utilising the implicitly restarted Arnoldi method with a sparse iterative Krylov solver and novel preconditioner. Asymmetry resulting from a static aeroelastic simulation based on a finite-element model of the underlying geometry in a wind tunnel modifies the global modes of the earlier fluid-only symmetric full-span analysis. A flutter stability analysis at wind-tunnel flow conditions below shock-buffet onset finds no instability in the structural degrees-of-freedom, whereas in shock-buffet flow with globally unstable fluid modes additional marginally unstable structural (and fluid) modes emerge. The developed stability tool for coupled analysis is instrumental in identifying those physically relevant and strongly coupled modes where a standard pk-type (p being eigenvalue and k reduced frequency) flutter analysis fails. With the complementary computation of adjoint eigenmodes, the core of the instability is pinpointed to a relatively small wing area which may help to effect the control and delay of this detrimental transonic unsteadiness. We contribute to the question on how the presence of the elastic wing structure impacts on the otherwise pure aerodynamic three-dimensional shock-buffet dynamics.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3