Bespoke stability analysis tool in next-generation computational fluid dynamics solver

Author:

Vevek U SORCID,Houtman J.ORCID,Timme S.ORCID

Abstract

Abstract This paper presents some of the first results of global linear stability analyses performed using a bespoke eigensolver that has recently been implemented in the next generation flow solver framework CODA. The eigensolver benefits from the automatic differentiation capability of CODA that allows computation of the exact product of the Jacobian matrix with an arbitrary complex vector. It implements the Krylov–Schur algorithm for solving the eigenvalue problem. The bespoke tool has been validated for the case of laminar flow past a circular cylinder with numerical results computed using the TAU code and those reported in the literature. It has been applied with both second-order finite volume and high-order discontinuous Galerkin schemes for the case of laminar flow past a square cylinder. It has been demonstrated that using high-order schemes on coarser grids leads to well-converged eigenmodes with a shorter computation time compared to using second-order schemes on finer grids.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference24 articles.

1. Accuracy of the Cell-Centered Grid Metric in the DLR TAU-Code

2. Generation of unstructured curvilinear grids and high-order discontinuous Galerkin discretization applied to a 3D high-lift configuration

3. Spliss: A Sparse Linear System Solver for Transparent Integration of Emerging HPC Technologies into CFD Solvers and Applications

4. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method

5. [9] Vevek, U.S. , Timme, S. , Pattinson, J. , Stickan, B. and Büchner, A. Next-generation computation fluids dynamics capabilities for aircraft aeroelasticity and loads. In 19th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2022, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3