Scaling laws for planetary sediment transport from DEM-RANS numerical simulations

Author:

Pähtz ThomasORCID,Durán OrencioORCID

Abstract

We use an established discrete element method (DEM) Reynolds-averaged Navier–Stokes (RANS)-based numerical model to simulate non-suspended sediment transport across conditions encompassing almost seven orders of magnitude in the particle–fluid density ratio$s$, ranging from subaqueous transport ($s=2.65$) to aeolian transport in the highly rarefied atmosphere of Pluto ($s=10^7$), whereas previous DEM-based sediment transport studies did not exceed terrestrial aeolian conditions ($s\approx 2000$). Guided by these simulations and by experiments, we semi-empirically derive simple scaling laws for the cessation threshold and rate of equilibrium aeolian transport, both exhibiting a rather unusual$s^{1/3}$-dependence. They constitute a simple means to make predictions of aeolian processes across a large range of planetary conditions. The derivation consists of a first-principle-based proof of the statement that, under relatively mild assumptions, the cessation threshold physics is controlled by only one dimensionless control parameter, rather than two expected from dimensional analysis. Crucially, unlike existing models, this proof does not resort to coarse-graining the particle phase of the aeolian transport layer above the bed surface. From the pool of existing models, only that by Pähtzet al.(J. Geophys. Res.: Earth, vol. 126, 2021, e2020JF005859) is somewhat consistent with the combined numerical and experimental data. It captures the scaling of the cessation threshold and the$s^{1/3}$-dependence of the transport rate, but fails to capture the latter's superimposed grain size dependence. This hints at a lack of understanding of the transport rate physics and calls for future studies on this issue.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3