Saltating particles in a turbulent boundary layer: experiment and theory

Author:

CREYSSELS M.,DUPONT P.,EL MOCTAR A. OULD,VALANCE A.,CANTAT I.,JENKINS J. T.,PASINI J. M.,RASMUSSEN K. R.

Abstract

The work presented here focuses on the analysis of a turbulent boundary layer saturated with saltating particles. Experiments were carried out in a wind tunnel 15m long and 0.6m wide at the University of Aarhus in Denmark with sand grains 242 μm in size for wind speeds ranging from the threshold speed to twice its value. The saltating particles were analysed using particle image velocimetry (PIV) and particle-tracking velocimetry (PTV), and vertical profiles of particle concentration and velocity were extracted. The particle concentration was found to decrease exponentially with the height above the bed, and the characteristic decay height was independent of the wind speed. In contrast with the logarithmic profile of the wind speed, the grain velocity was found to vary linearly with the height. In addition, the measurements indicated that the grain velocity profile depended only slightly on the wind speed. These results are shown to be closely related to the features of the splash function that characterizes the impact of the saltating particles on a sandbed. A numerical simulation is developed that explicitly incorporates low-velocity moments of the splash function in a calculation of the boundary conditions that apply at the bed. The overall features of the experimental measurements are reproduced by simulation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference40 articles.

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3