Abstract
We design an open-loop active flow control for separated flows around a plunging circular cylinder based on resolvent analysis. The cylinder is plunging at a Strouhal number of 0.36 and a Reynolds number of 500. A linear time-periodic system for control is obtained by linearizing the non-inertial incompressible vorticity equation in the cylinder-fixed frame about a time-averaged base flow. Using the Lyapunouv–Floquet transformation, the linear time-periodic system is transformed into a similar linear time-invariant system, whose resolvent is analysed to obtain an optimal actuating Strouhal number of 0.1464 for the transformed linear system. Simulations show that the active control with tangential actuations is capable of reducing the lift fluctuation by up to 25.7 % when the flow is actuated near the predicted harmonic and subharmonic frequencies.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献