Accelerating turbulence in heated micron tubes at supercritical pressure

Author:

Cao YuliORCID,Xu RuinaORCID,He S.ORCID,Jiang PeixueORCID

Abstract

The purpose of this research was to provide further understanding of turbulent dynamics and heat transfer mechanisms in accelerating flows with thermophysical variations and pressure drops in micron tubes. Direct numerical simulations were conducted to investigate the turbulence to supercritical pressure ${\rm CO}_2$ in heated micron tubes with inner diameter $99.2~\mathrm {\mu }$ m. In general, the turbulent heat transfer enhancement/deterioration at supercritical pressure is dominated by variations in thermophysical properties, buoyancy and thermal acceleration; however, the mechanism differs in micron tubes ( $d^* < 100\ \mathrm {\mu }$ m). The results showed that the pressure drop and scale effect made significant contributions to the development of turbulence flows heated at supercritical pressure in micron tubes, leading to the prominent property change and flow acceleration in the inlet fully developed turbulent flow. The deviation on temperature distribution because of pressure changes was non-negligible. The primary contribution of the acceleration was the decay of a boundary layer, which significantly suppressed the production of turbulence and decreased heat transfer. The acceleration had stabilizing effects on the ejection and sweep motions of the turbulent flow. The high-speed fluid contributed to a new disturbance scenario of the flow with a larger spanwise wavenumber superimposed on existing perturbations. The high-speed streak width in the quasilaminar region was approximately $150$ $160\nu /u_\tau$ in accelerating flow. In the micron tubes, the Reynolds stress events of quadrant Q4 contributed 60 % of the Reynolds stress, greater than those of quadrant Q2.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference65 articles.

1. The Turbulent Flows of Supercritical Fluids with Heat Transfer

2. Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment

3. Zeighami, R.M. , Laser, D. , Zhou, P. , Asheghi, M. , Devasenathipathy, S. , Kenny, T.W. , Santiago, J.G. & Goodson, K.E. 2000 Experimental investigation of flow transition in microchannels using micron-resolution particle image velocimetry. In Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. IEEE.

4. Small-Angle X-ray Scattering Study of Supercritical Carbon Dioxide

5. Experimental Investigation of Turbulent Heat Transfer in the Entrance Region of Microchannels

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3