Turbulent pipe flow and heat transfer of a binary mixture at supercritical pressure: Influences of cross-diffusion effects

Author:

Ren Yangjian,Xiao Mingfei,Hu Zhan-ChaoORCID

Abstract

Cross-diffusion effects, including Soret and Dufour effects, are enhanced around the pseudo-critical temperature (Tpc) of a binary mixture. Their influences on heat transfer at supercritical pressure have been scarcely studied. To bridge this gap, large-eddy simulations (LES) are conducted to investigate forced convective heat transfer of a CO2–ethane mixture at supercritical pressures in a circular pipe subject to a uniform heat flux. Both heating and cooling conditions, along with varying initial concentrations and thermodynamic pressures, are included in the simulations. The LES results reveal that the Soret effect causes concentration separation, resulting in a concentration boundary layer. The magnitudes of the thermodiffusion factor (kT) and the radial temperature gradient control the intensity of separation, which is more pronounced at near-critical pressure and high heat flux. Since kT is significant only around Tpc, downstream decay of the concentration separation is observed as the loci of T=Tpc migrate away from the wall so that the local radial temperature gradient diminishes. The primary factors affecting heat transfer are the variations in thermal conductivity and isobaric specific heat resulting from concentration separation. In contrast, the Dufour effect and the accompanying inter-diffusion play negligible roles. In deterioration scenarios, the bulk Nusselt number (Nub) shows a maximum relative drop of 8%, whereas in enhancement scenarios, Nub shows a maximum relative increase in 10%, with both deterioration and enhancement decaying downstream. Cross-diffusion effects have negligible impacts on density and streamwise velocity, but noticeably alter streamwise velocity fluctuation and turbulent kinetic energy.

Funder

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3