Analysis and optimisation of mixing in binary droplet collisions

Author:

Ruiz-Gutiérrez ÉlfegoORCID,Hasslberger JosefORCID,Klein MarkusORCID,Dalgarno KennyORCID,Chakraborty NilanjanORCID

Abstract

The collision of binary droplets plays a key role in several industrial, chemical and biological processes. In these processes, the quality of the desired outcome is strongly dependent on the mixing of the liquid droplets as they collide in mid-air. In this work, multiphase direct numerical simulations based on the volume-of-fluid method have been used to investigate the process of mixing and analyse the effects of parameters such as injection velocity, timing and collision angles. The evolution of mixing due to convection and irreversible diffusive processes has been quantified by means of the segregation parameter. To synthesise the outcome of a collision, the impact parameter has been redefined to account for the collision of non-spherical droplets. It has been found that the optimal mixing does not occur for symmetric head-on collisions, but rather at moderately asymmetrical configurations. This behaviour has been explained by analysing the velocity gradient tensor. It has been demonstrated that by breaking the symmetry, the local topology of the flow is altered and the resulting convective flows increase the contact area between the liquids, thereby augmenting the mixing process. However, it was also observed that lateral misalignment transforms the initial kinetic energy into the spinning of the merged droplets, thus preventing an enhanced mixing.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3