Optimal stirring strategies for passive scalar mixing

Author:

LIN ZHI,THIFFEAULT JEAN-LUC,DOERING CHARLES R.

Abstract

We address the challenge of optimal incompressible stirring to mix an initially inhomogeneous distribution of passive tracers. As a quantitative measure of mixing we adopt the H−1 norm of the scalar fluctuation field, equivalent to the (square root of the) variance of a low-pass filtered image of the tracer concentration field. First we establish that this is a useful gauge even in the absence of molecular diffusion: its vanishing as t → ∞ is evidence of the stirring flow's mixing properties in the sense of ergodic theory. Then we derive absolute limits on the total amount of mixing, as a function of time, on a periodic spatial domain with a prescribed instantaneous stirring energy or stirring power budget. We subsequently determine the flow field that instantaneously maximizes the decay of this mixing measure – when such a flow exists. When no such ‘steepest descent’ flow exists (a possible but non-generic situation), we determine the flow that maximizes the growth rate of the H−1 norm's decay rate. This local-in-time optimal stirring strategy is implemented numerically on a benchmark problem and compared to an optimal control approach using a restricted set of flows. Some significant challenges for analysis are outlined.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical algorithms and simulations of boundary dynamic control for optimal mixing in unsteady Stokes flows;Computer Methods in Applied Mechanics and Engineering;2023-12

2. Mixing for Generic Rough Shear Flows;SIAM Journal on Mathematical Analysis;2023-11-07

3. Feedback control for fluid mixing via advection;Journal of Differential Equations;2023-11

4. Analysis and optimisation of mixing in binary droplet collisions;Journal of Fluid Mechanics;2023-10-23

5. On the Norm Equivalence of Lyapunov Exponents for Regularizing Linear Evolution Equations;Archive for Rational Mechanics and Analysis;2023-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3