Prediction of the phase difference between large-scale velocity and Reynolds stress fluctuations in wall turbulence

Author:

Cui G.ORCID,Jacobi I.ORCID

Abstract

A resolvent-based model was used to predict the phase-difference profile between velocity and stress coherent motions measured in a high Reynolds number channel flow as a proxy for predicting large- and small-scale turbulent interactions. The resolvent model is based on the transfer-function approach for scale interactions in wall turbulence proposed in Jacobiet al.(J. Fluid Mech., vol 914, 2021, pp. 1–27), but incorporates a quasi-empirical weighting scheme to construct composite mode shapes that represent the realistic dispersion of convection velocities associated with the large scales of turbulence. The weighting scheme was derived from the observed similarity between the spectral region where the resolvent operator is low rank and the streamwise spectral energy density of wall-bounded turbulence, and was found to be superior to both single-convection velocity models and models based on linearly weighted modes, when compared with cross-spectral phase calculations from a channel flow computation. The ability to predict the phase relationship between large-scale coherent motions and their associated stress fluctuations allows for refining and extending resolvent-based models of turbulence to describe small-scale features of wall-bounded flows.

Funder

Israel Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on carbon dioxide capture and mass transfer in hydro-jet cyclone;Separation and Purification Technology;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3