Abstract
The scale-dependent variability of convective velocities and structure inclination angles in wall-bounded turbulence was studied experimentally via space–time energy spectrum measurements. We found that the variability of convection velocities for large-scale motions (LSMs) decreased inversely with streamwise wavenumbers, and that the variability trend was not fully explained by earlier applications of Kraichnan's ‘random-sweeping’ model of turbulence that assumed perfect scale separation. By analytically extending the random-sweeping model to allow for a dominant large scale in the random-sweeping signal that can interact with other LSMs, we showed how scale interactions can explain the variability trend in convection velocities for LSMs. The variability in convection velocities was also shown to correlate with the scale-dependent inclination angles of coherent structures that were obtained via cross-spectral analysis. Large-scale motions tended to exhibit shallower inclination to the wall with increasing convection velocity, while small-scale motions and those far from the wall exhibited the reverse behaviour. We proposed that these two opposite relationships between inclination angle and convection velocity can be explained in terms of a balance between opposing effects of the mean shear and the coherent structure geometry. Descriptions and models of convection velocity variability effects are useful both for modelling turbulence spectra and explaining the geometry of coherent structures.
Funder
Israel Science Foundation
Publisher
Cambridge University Press (CUP)