Perturbation-based active flow control in overexpanded to underexpanded supersonic rectangular twin jets

Author:

Samimy MoORCID,Webb NathanORCID,Esfahani Ata,Leahy Ryan

Abstract

The effects of perturbation-based active flow control on supersonic rectangular twin jets (SRTJ) over a wide range of nozzle pressure ratios (NPR = 2.77 to 6.7, corresponding to fully expanded Mach numbers Mj = 1.3 to 1.9) were investigated. The aspect ratio and design Mach number for the bi-conic, converging-diverging nozzles were 2 and 1.5, respectively. The flow and acoustic fields of SRTJ are known to couple, often generating high near-field (NF) pressure fluctuations and elevated far-field (FF) noise levels. Large-scale structures (LSS), or equivalently instability waves or wave packets, are responsible for mixing noise, broadband shock-associated noise, screech and coupling. The primary objective of this research was to manipulate the development of LSS in this complex flow to better understand and mitigate their effects. The organization and passage frequency of the LSS were altered by excitation of instabilities over a wide range of frequencies and modes. Key findings include: (1) the screech mode of each jet was flapping along its minor axis; (2) the jets coupled, out-of-phase primarily in overexpanded cases and in-phase primarily in underexpanded cases, along the minor axis of the SRTJ; (3) coupling has significant effects on the NF pressure fluctuations, but only minor effect on the FF noise; (4) standing waves were observed only on the minor axis plane of the SRTJ; (5) altering or suppressing coupling can significantly reduce NF pressure fluctuations; (6) two high-frequency excitation methods proved effective in reducing the FF noise; and (7) nonlinear interactions between the screech tones and excitation input were observed in controlled cases in which screech was only partially suppressed.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3