Droplet evaporation in inert gases

Author:

Zhao HuayongORCID,Nadal FrançoisORCID

Abstract

A general mixed kinetic-diffusion boundary condition is formulated to account for the out-of-equilibrium kinetics in the Knudsen layer. The mixed boundary condition is used to investigate the problem of quasi-steady evaporation of a droplet in an infinite domain containing inert gases. The widely adopted local thermodynamic equilibrium assumption is found to be the limiting case of infinitely large kinetic Péclet number ${{Pe}_k}$ , and it introduces significant error for ${{Pe}_k} \leqslant O(10)$ , which corresponds to a typical droplet radius $a$ of a few micrometres or smaller. When compared with experimental data, solutions based on the mixed boundary condition, which take into account the temperature jump across the Knudsen layer, better predict the time evolution of $a$ than the classical $D^2$ -law (i.e. $a^2 \propto t$ , where $t$ denotes time). In the slow evaporation limit, an analytical solution is obtained by linearising the full formulation about the equilibrium condition, which shows that the $D^2$ -law can be recovered only in the large ${{Pe}_k}$ limit. For small ${{Pe}_k}$ , where the process is dominated by kinetics, a linear relation, i.e. $a \propto t$ , emerges. When the gas phase density approaches the liquid density (e.g. at high-pressure or low-temperature conditions), the increase in the chemical potential of the liquid phase due to the presence of inert gases needs to be accounted for when formulating the mixed boundary condition, an effect largely ignored in the literature so far.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3