Author:
Varanasi Vijay K.,Brabham Chad,Norsworthy Jason K.
Abstract
AbstractPalmer amaranth (Amaranthus palmeri S. Watson), a dioecious summer annual species, is one of the most troublesome weeds in U.S. cropping systems. The evolution of resistance to protoporphyrinogen oxidase inhibitors in A. palmeri biotypes is a major cause of concern to soybean [Glycine max (L.) Merr.] and cotton (Gossypium hirsutum L.) growers in the midsouthern United States. The objective of this study was to confirm and characterize the non–target site mechanism in a fomesafen-resistant accession from Randolph County, AR (RCA). A dose–response assay was conducted to assess the level of fomesafen resistance, and based on the GR50 values, the RCA accession was 18-fold more resistant to fomesafen than a susceptible (S) biotype. A TaqMan allelic discrimination assay and sequencing of the target-site genes PPX2 and PPX1 revealed no known or novel target-site mutations. An SYBR Green assay indicated no difference in PPX2 gene expression between the RCA and S biotypes. To test whether fomesafen resistance is metabolic in nature, the RCA and the S biotypes were treated with different cytochrome P450 (amitrole, piperonyl butoxide [PBO], malathion) and glutathione S-transferase (GST) (4-chloro-7-nitrobenzofurazan [NBD-Cl]) inhibitors, either alone or in combination with fomesafen. Malathion followed by (fb) fomesafen in RCA showed the greatest reduction in survival (67%) and biomass (86%) compared with fomesafen alone (45% and 66%, respectively) at 2 wk after treatment. Interestingly, NBD-Cl fb fomesafen also resulted in low survival (35%) compared with the fomesafen-only treatment (55%). Applications of malathion or NBD-Cl preceding fomesafen treatment resulted in reversal of fomesafen resistance, indicating the existence of cytochrome P450– and GST-based non–target site mechanisms in the RCA accession. This study confirms the first case of non–target site resistance to fomesafen in A. palmeri.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Reference44 articles.
1. Rangani G , Salas R , Aponte RA , Landes A Roma-Burgos N (2018) A novel amino acid substitution (Gly399Ala) in protoporphyrinogen oxidase 2 confers broad spectrum PPO-inhibitor resistance in Amaranthus palmeri. In Proceedings of the 58th Annual Meeting of the Weed Science Society of America. Arlington, VA: Weed Science Society of America
2. Obenland OA , Ma R , O’Brien S , Lygin AV Riechers DE (2017) Resistance to carfentrazone-ethyl in tall waterhemp. Pages 30–31 in Proceedings of the 72nd Annual Meeting of the North Central Weed Science Society. St Louis, MO: North Central Weed Science Society of America
3. Two new PPX2
mutations associated with resistance to PPO-inhibiting herbicides in Amaranthus palmeri
4. Mechanism of resistance to mesotrione in an Amaranthus tuberculatus population from Nebraska, USA
5. Porphyrin Accumulation and Export by Isolated Barley (Hordeum vulgare) Plastids (Effect of Diphenyl Ether Herbicides)
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献