Target‐site mutations Ile1781Leu and Ile2041Asn in the ACCase2 gene confer resistance to fluazifop‐p‐butyl and pinoxaden herbicides in a johnsongrass accession from Arkansas, USA

Author:

González‐Torralva Fidel1ORCID,Norsworthy Jason K.1ORCID

Affiliation:

1. Department of Crop, Soil, and Environmental Sciences University of Arkansas Fayetteville AR USA

Abstract

AbstractJohnsongrass [Sorghum halepense (L.) Pers.] is a troublesome weed species in different agricultural and non‐agricultural areas. Because of its biology, reproductive system, and seed production, effective management is challenging. An accession with low susceptibility to the acetyl‐CoA carboxylase (ACCase)‐inhibiting herbicides fluazifop‐p‐butyl (fluazifop) and pinoxaden was collected in eastern Arkansas. In this research, the molecular mechanisms responsible for ACCase resistance were investigated. Dose–response experiments showed a resistance factor of 181 and 133 for fluazifop and pinoxaden, respectively. Molecular analysis of both ACCase1 and ACCase2 genes was researched. Nucleotide comparison of ACCase1 between resistant and susceptible accessions showed no single nucleotide polymorphisms. Nonetheless, analysis of ACCase2 in fluazifop‐resistant johnsongrass plants revealed the Ile1781Leu target‐site mutation was dominant (nearly 75%), whereas the majority of pinoxaden‐resistant johnsongrass plants had the Ile2041Asn (60%). Not all sequenced johnsongrass plants displayed a target‐site mutation, suggesting the presence of additional resistance mechanisms. Amplification of ACCase1 and ACCase2 was not responsible for resistance because of the similar values obtained in both resistant and susceptible accessions. Experiments with malathion and NBD‐Cl suggest the presence of herbicide metabolism. Outcomes of this research demonstrated that fluazifop‐ and pinoxaden‐resistant johnsongrass plants displayed a target‐site mutation in ACCase2, but also that non‐target‐site resistance mechanisms would be involved and require a detailed study.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3