Gene Space and Transcriptome Assemblies of Leafy Spurge (Euphorbia esula) Identify Promoter Sequences, Repetitive Elements, High-Quality Markers, and a Full-Length Chloroplast Genome

Author:

Horvath David P.,Patel Sagar,Doğramaci Münevver,Chao Wun S.,Anderson James V.,Foley Michael E.,Scheffler Brian,Lazo Gerard,Dorn Kevin,Yan Changhui,Childers Anna,Schatz Michel,Marcus Shoshana

Abstract

AbstractLeafy spurge (Euphorbia esulaL.) is an invasive perennial weed infesting range and recreational lands of North America. Previous research and omics projects withE. esulahave helped develop it as a model for studying many aspects of perennial plant development and response to abiotic stress. However, the lack of an assembled genome forE. esulahas limited the power of previous transcriptomics studies to identify functional promoter elements and transcription factor binding sites. An assembled genome forE. esulawould enhance our understanding of signaling processes controlling plant development and responses to environmental stress and provide a better understanding of genetic factors impacting weediness traits, evolution, and herbicide resistance. A comprehensive transcriptome database would also assist in analyzing future RNA-seq studies and is needed to annotate and assess genomic sequence assemblies. Here, we assembled and annotated 56,234 unigenes from an assembly of 589,235 RNA-seq-derived contigs and a previously published Sanger-sequenced expressed sequence tag collection. The resulting data indicate that we now have sequence for >90% of the expressedE. esulaprotein-coding genes. We also assembled the gene space ofE. esulaby using a limited coverage (18X) genomic sequence database. In this study, the programs Velvet and Trinity produced the best gene-space assemblies based on representation of expressed and conserved eukaryotic genes. The results indicate thatE. esulacontains as much as 23% repetitive sequences, of which 11% are unique. Our sequence data were also sufficient for assembling a full chloroplast and partial mitochondrial genome. Further, marker analysis identified more than 150,000 high-quality variants in ourE. esulaL-RNA–scaffolded, whole-genome, Trinity-assembled genome. Based on these results,E. esulaappears to have limited heterozygosity. This study provides a blueprint for low-cost genomic assemblies in weed species and new resources for identifying conserved and novel promoter regions among coordinately expressed genes ofE. esula.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3