Chronosequence of invasion reveals minimal losses of population genomic diversity, niche expansion, and trait divergence in the polyploid, leafy spurge

Author:

Lake Thomas A.1ORCID,Briscoe Runquist Ryan D.1ORCID,Flagel Lex E.12ORCID,Moeller David A.1ORCID

Affiliation:

1. Department of Plant and Microbial Biology University of Minnesota St. Paul Minnesota USA

2. Gencove Long Island City New York USA

Abstract

AbstractRapid evolution may play an important role in the range expansion of invasive species and modify forecasts of invasion, which are the backbone of land management strategies. However, losses of genetic variation associated with colonization bottlenecks may constrain trait and niche divergence at leading range edges, thereby impacting management decisions that anticipate future range expansion. The spatial and temporal scales over which adaptation contributes to invasion dynamics remain unresolved. We leveraged detailed records of the ~130‐year invasion history of the invasive polyploid plant, leafy spurge (Euphorbia virgata), across ~500 km in Minnesota, U.S.A. We examined the consequences of range expansion for population genomic diversity, niche breadth, and the evolution of germination behavior. Using genotyping‐by‐sequencing, we found some population structure in the range core, where introduction occurred, but panmixia among all other populations. Range expansion was accompanied by only modest losses in sequence diversity, with small, isolated populations at the leading edge harboring similar levels of diversity to those in the range core. The climatic niche expanded during most of the range expansion, and the niche of the range core was largely non‐overlapping with the invasion front. Ecological niche models indicated that mean temperature of the warmest quarter was the strongest determinant of habitat suitability and that populations at the leading edge had the lowest habitat suitability. Guided by these findings, we tested for rapid evolution in germination behavior over the time course of range expansion using a common garden experiment and temperature manipulations. Germination behavior diverged from the early to late phases of the invasion, with populations from later phases having higher dormancy at lower temperatures. Our results suggest that trait evolution may have contributed to niche expansion during invasion and that distribution models, which inform future management planning, may underestimate invasion potential without accounting for evolution.

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3